УДАРНОВОЛНОВОЙ СИНТЕЗ

Термин
ударно-волновой синтез
Термин на английском
shock wave synthesis
Синонимы
детонационный синтез
Аббревиатуры
Связанные термины
детонационный синтез
Определение
Метод механического ударно-волнового воздействия, представляющий собой быстро протекающий процесс, который создает динамические условия для синтеза конечного продукта и его диспергирования до порошка с нанометровым размером частиц.
Описание

Детонационный синтез используется для получения различных морфологических форм углерода, преимущественно нанокристаллического порошка алмаза, и нанопорошков оксидов различных металлов: Al, Mg, Ti, Zr, Zn и других.

При получении алмазных нанопорошков из смесей графита с металлами длительность ударной волны составляет 10-20 мкс, создаваемое давление достигает 20-40 ГПа. Более технологично получение алмазных порошков путем взрыва органических веществ с высоким содержанием углерода и относительно низким содержанием кислорода, т. е. детонация конденсированных взрывчатых веществ с отрицательным кислородным балансом; в этом случае при взрыве выделяется свободный углерод, из которого образуется алмазная фаза. Известны два варианта детонационного синтеза алмазных нанопорошков из конденсированных углеродсодержащих взрывчатых веществ с отрицательным кислородным балансом: при “сухом” синтезе алмазных наночастиц продукты взрыва расширяются в инертную атмосферу и охлаждаются в газовой фазе; в случае “водного” синтеза используется водяной охладитель полученных алмазных частиц.

Давление в сотни тысяч атмосфер и температура до нескольких тысяч градусов, характеризующие детонационный процесс, соответствуют области термодинамической устойчивости алмазной фазы на p-T-диаграмме возможных состояний углерода. Вместе с тем в детонационном синтезе при малом времени существования высоких давлений и температур, необходимых для образования алмаза, важная роль принадлежит кинетике образования и роста зародышей алмазной фазы.Обычно для получения алмазных нанопорошков используют смеси тринитротолуола и гексогена в весовом соотношении 1:1 или 3:2. Для таких смесей давление и температура в детонационной волне составляют p > 15 ГПа и T > 3000 K. При “сухом” детонационном синтезе процесс проводят в специальных взрывных камерах, заполненных инертным или углекислым газом, которые предотвращает окисление образовавшихся алмазных частиц и их превращение в графит. Образование наночастиц алмаза происходит за 0.2-0.5 мкс, так как в детонационном синтезе при весьма малом времени образования алмазных частиц скорость их роста на несколько порядков выше таковой для статических условий. После взрыва конденсированные продукты синтеза собирают и обрабатывают в горячих минеральных кислотах под давлением для удаления сажи и других примесей, многократно промывают в воде и сушат. Выход алмазного порошка составляет 8-9% от исходной массы взрывчатых веществ. Характерной особенностью алмазных нанопорошков, получаемых детонационным синтезом, является чрезвычайно малая дисперсия размеров наночастиц - основная доля частиц имеет размер 4-5 нм.

При использовании в качестве исходных материалов детонационного синтеза металлов или химических соединений применяется химически нейтральная по отношению к конечному продукту газовая или жидкая среда, способствующая быстрому охлаждению полученного вещества и стабилизации его высокотемпературных и метастабильных кристаллических модификаций. В этом случае слой исходного вещества (высокопористая металлическая среда, химическое соединение, золь или гель гидроксида металла) подвергается ударно-волновому воздействию от контактного заряда взрывчатого вещества. В ударной волне происходит сжатие и прогрев высокопористого металла или протекают реакции разложения исходного соединения до оксида с последующей стабилизацией оксидных фаз. После выхода ударной волны на свободную поверхность исходного вещества материал разлетается в газовую атмосферу взрывной камеры или в жидкий охладитель.

В детонационном синтезе оксидных нанопорошков из металлов применяется активная кислородсодержащая среда (например, O2 + N2). Горение металла с образованием оксида происходит на стадии разлета. В атмосфере углекислого газа удается синтезировать углеродные нанотрубки и сферические наночастицы углерода.

Авторы
  • Гусев Александр Иванович, д.ф.-м.н.
Ссылки
  1. А. И. Гусев. Наноматериалы, наноструктуры, нанотехнологии. Изд. 2-е, исправленное и дополненное. Москва: Наука-Физматлит, 2007. 416 с.
  2. A. I. Gusev, A. A. Rempel. Nanocrystalline Materials. Cambridge: Cambridge International Science Publishing, 2004. 351 pp.
Иллюстрации
Фазовая p-T диаграмма состояний углерода с указанием областей синтеза алмаза: (1) дето-национный син

Фазовая p-T диаграмма состояний углерода с указанием областей синтеза алмаза: (1) дето-национный синтез с использованием графита, (2) статическое превращение с использовани-ем катализатора, (3) статическое превращение без катализатора, (4) детонационный синтез с применением тринитротолуола и гексогена


Теги
методы получения нанопорошков
Разделы
(Источник: «Словарь основных нанотехнологических терминов РОСНАНО»)


Энциклопедический словарь нанотехнологий 

УДЕЛЬНАЯ ПОВЕРХНОСТЬ →← УГЛЕРОДНЫЕ НАНОТРУБКИ

T: 0.107747415 M: 3 D: 3